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MINERvAʼs Motivation"
•  Entering era of precision neutrino measurements"
•  Requires precise knowledge of cross sections, 

final states, and nuclear effects"
–  Current cross sections poorly known "

•  20-100% total error"
–  Current unresolved discrepancies"

•  CCQE, Coherent pion production, nu-Fe nuclear effects"
–  2-det expts depend upon neutrino interaction models 

to extrapolate backgrounds from near to far detector"
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• No other experiment exists to perform precision 
measurements in MINERvA’s energy range (1-~10 GeV)! �



What is MINERvA?"

•  Accelerator-based neutrino experiment"
•  Located at Fermi National Accelerator 

Laboratory, USA"
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MINERvA	  



Creating Our Neutrino Beam"
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•  120 GeV protons + graphite target = mesons"
–  π±, K±, some K0"

–  Mesons decay in flight to produce neutrino beam"
•  Magnetic focusing horns"

–  Polarity of horns = neutrino or antineutrino beam"
–  Movable horn/target = tunable neutrino beam 

energy"



The MINERvA Detector"
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Composed	  of	  120	  modules	  



The MINERvA Detector"
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MulIple	  nuclear	  targets	  (C,	  CH,	  Fe,	  Pb,	  He,	  H2O)	  
	  
MINOS	  Near	  Detector	  acts	  as	  a	  muon	  spectrometer	  



The MINERvA Detector"
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Pb	  

Fe	  

Target	   Fiducial	  Mass	  

Liquid	  He	   0.25	  tons	  

C	   0.17	  tons	  

Fe	   0.97	  tons	  

Pb	   0.98	  tons	  

CH	  (tracker)	   6.43	  tons	  

Targets	  are	  Fe/Pb,	  Pb/Fe,	  C/Pb/Fe,	  Pb,	  Fe/Pb	  



The MINERvA Detector"
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UX

VX

16.7	  mm	  
17	  mm	  

Outer	  Detector	  
Fe	  +	  ScinIllator	  
towers	  for	  hadron	  
calorimetery	  

Inner	  Detector	  
UXVX	  planes	  for	  
3D	  tracking	  

Side	  ECAL	  
Pb	  +	  ScinIllator	  
bars	  for	  EM	  
calorimetry	  

Finely	  segmented	  (~32k	  channels)	  



Data Collection To Date"
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Accelerator	  based	  neutrino	  experiments	  quanIfy	  their	  data	  set	  size	  in	  terms	  of	  the	  
number	  of	  protons	  directed	  onto	  the	  target	  (POT)	  

Full	  Detector	  Installed	  



MINERvAʼs Impact"
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Run	  plan:	  Approved	  for	  4.9e20	  POT	  in	  LE,	  12e20	  POT	  in	  ME	  beam	  configuraIons	  

To	  date:	  1.5e20	  POT	  LE	  neutrino	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  1.3e20	  POT	  LE	  anI-‐nu	  (full	  detector)	  

Target	   CC	  in	  LE	  
4e20	  POT	  	  

Expected	  
Total	  CC	  

Liquid	  He	   56k	   0.6M	  

C	   36k	   0.4M	  

Fe	   215k	   2.7M	  

Pb	   228k	   2.7M	  

CH	  (PlasIc)	   1363k	  

Water	   81k	   1.0M	  



Analysis Goals"
Cross Section Measurements!

Axial form factor of the nucleon"
Accurately measured over a wide Q2 range"

Coherent pion production "
Statistically significant measurements of atomic mass dependence"

Resonance production in both NC & CC neutrino interactions"
Statistically significant measurements with 1-5 GeV neutrinos"

"
Other Stuff!

Strange particle production"
Important backgrounds for proton decay"

Nuclear effects as f(Bjorken x)"
Expect some significant differences for ν-A vs e/µ-A nuclear effects"

Final State Interactions (ex: pion absorption in the nucleus)"
Parton distribution functions"
Measurement of high-x behavior of quarks"

Generalized parton distributions"
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Analyses Currently In Progress"
•  Inclusive Analyses"

–  Single pion production"
–  CC ratios as f(Z)"

•  Exclusive States with Tracks"
–  NCE"
–  CCQE: 1 track, 2 track"
–  Resonant and Coherent pion production"

•  EM Final States"
–  Resonant CC π0"

–  NC π0"

–  νe scattering and νe CCQE"
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Understanding the Flux"
•  External measurements: 

hadron production data on thin 
carbon targets"

•  Internal measurements: muon 
monitors placed in the rock 
absorber downstream of 
target, special runs with 
varying target position and 
horn current"

•  Tunable beam MC, match 
spectra of observed hadrons in 
data"
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LE,	  target	  at	  10	  cm,	  horn	  current	  185	  kA	  

LE,	  target	  at	  100	  cm,	  horn	  current	  200	  kA	  

(fake	  data)	  

(fake	  data)	  



Calibrating Energy Scale"
•  Test Beam Detector: small, reconfigurable version of our detector, 

collected data at Fermilabʼs Test Beam Facility"

•  Study identification and momentum separation of low energy hadrons, 
hadronic energy scale"

•  Ran Summer 2010, used 2 different detector configurations, analysis in 
progress"
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Target	  and	  collimator	  

Upstream	  TOF	  
Upstream	  wire	  chambers	  

Dipole	  magnets	  

Downstream	  wire	  chambers	  

Downstream	  TOF	  



Event Reconstruction"
•  Group hits within a single spill by 

timing"

•  Muons identified and measured 
in MINOS by range or curvature 
(6%, 12% resoultion)"

•  Working to include contained and 
side-exiting muons"

•  Pion and proton tracks are 
identified through energy loss 
profile"

•  Showers are identified, visible E 
found calorimetrically"
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Latest Results: CC Inclusive"
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•  νμ CC in Fe, Pb, CH, measure Fe/Pb CC rates"

Require:	  
1	  muon	  track,	  
matched	  to	  a	  
negaIve	  charge	  
MINOS	  track	  
	  
Z	  posiIon	  of	  
muon	  vertex	  in	  
nuclear	  target/
first	  module	  
downstream	  of	  
target	  
	  
Fiducial	  cut	  on	  
muon	  vertex	  
	  
	  



Latest Results: CC Inclusive"
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•  νμ CC in Fe, Pb, CH, measure Fe/Pb CC rates"
Backgrounds	  originate	  from	  neutrino	  interacIons	  
in	  scinIllator	  upstream	  and	  downstream	  of	  the	  
target	  
	  
Use	  acIve	  plasIc	  scinIllator	  reference	  target	  for	  
background,	  acceptance	  studies	  

MC:	  11.2e20	  POT	  
Data:	  9.1e19	  POT	  



Latest Results: CC Inclusive"
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•  νμ CC in Fe, Pb, CH, measure Fe/Pb CC rates"

MC:	  11.2e20	  POT	  
Data:	  9.1e19	  POT	  

Discrepancies	  between	  data	  and	  MC	  result	  primarily	  from	  
untuned	  flux	  model	  



Latest Results: CCQE"
•  Event selection:"

–  MINOS matched 
muon track"

–  Vertex in tracker 
region"

–  No significant energy 
deposition in target 
region"

–  Radial position of all 
track nodes < 87 cm"
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Latest Results: CCQE"
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Near Future"
•  To reach our goals of high precision 

measurements we require: "
– Strong characterization of flux and flux 

uncertainties"
– Calibration and energy scale of the detector"
– Precise reconstruction algorithms"

•  Focusing our effort on these tasks, as they 
are necessary for all our analyses to move 
forward"

•  Next major analysis update: Spring 2012"
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Backup Slides"
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Assume 16.0x1020 in LE and  ME beam configurations"
"

•  Quasi-elastic " " " " " " "0.8 M events "
•  Resonance Production " " " "1.7 M total"
•  Transition: Resonance to DIS " " "2.1 M events"
•  DIS, Structure Funcs. and high-x PDFs "4.3 M DIS events"
•  Coherent Pion Production " " " "89 K CC / 44 K NC"
•  Strange and Charm Particle Production "> 240 K fully reco. events"
•  Generalized Parton Distributions " "order 10 K events""

Expected Event Rates"

NEED	  TO	  UPDATE	  



The Neutrino Beam"
•  LE-configuration: "

–  Em >0.35 GeV"
–  Epeak = 3.0 GeV, <Eν> = 10.2 

GeV"
–  rate = 60 K events/ton - 1020 pot"

•  ME-configuration: "
–  Epeak = 7.0 GeV, <Eν> = 8.0 GeV "
–  rate = 230 K events/ton - 1020 pot"

•  HE-configuration: "
–  Epeak = 12.0 GeV, <Eν> = 14.0 

GeV "
–  rate = 525 K events/ton - 1020 pot"
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Move target only 

Move target 
and 2nd horn 

Expect to run with LE (4e20 POT), ME (12e20 POT)"



The MINERvA Detector"
•  Must reconstruct 

exclusive final states"
–  high granularity for charged 

particle tracking and ID, 
low p thresholds for particle 
detection"

•  Also must contain"
–  EM showers"
–  High momentum hadrons"
–  Muons from QE, contained 

well enough to measure 
momentum"

–  Nuclear targets to study 
nuclear effects"
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v BeamMINERvAMINOS

ArgoNeuT
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MINERvAs Impact"

MINOS, MINERνA NOvA, MINERνA T2K, SciBooNE 



Latest Results: CCQE"
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Quasi-Elastic Analysis"

•  Nuclear effects play a huge role in modeling these events"
–  Fermi momentum (target nucleon has momentum in nucleus), modifies scattering 

angle, p spectra of outgoing final state particle"
–  Nuclear re-interaction (outgoing nucleon can interact with target nucleus), 

modifies outgoing nucleon p, direction"
–  ~20% theoretical uncertainty on these events!"

•  Experimental evidence indicates a lack of understanding! "
–  MiniBooNE, K2K observe unexpected turn-over of data at low Q2"

Phys. Rev. Lett. 100, 032301 (2008) "

MiniBooNE	  
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Quasi-Elastic Analysis"

•  First expt to systematically study FA in range of Q2 = 0 to ~6 GeV2"
•  First expt to systematically study xsec across a range of atomic mass in 

same expt environment"
•  Sensitive to three models of FA"

–  Dipole approx (current assumption), constituent quark model, duality model 
(dipole breaks down @ Q2 = 0.5)"

Expected ability to measure high Q2 
behavior and sensitivity to non-dipole 
FA form factor"
Simulated MINERvA Axial-Vector 
hypothesis (stat only)"

Wagenbruun, et al (hep-ph/0212190)"
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Quasi-Elastic Analysis"

•  >800K total events in 4 year run time"
•  Expect to achieve 5% total error on xsec measurement!"
•  Refined CCQE model used to re-analyze MB CCQE data"

Post MINERvA"
(stat errors only)"
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Coherent Pion Production"

•  ν scatters from entire nucleus, nucleus remains intact"
•  First measurement of atomic mass dependence across                       

a wide atomic mass range"
•  Factor of >100 increase in world’s current sample"

Surprising K2K, SciBooNE results!"

Phys. Rev. Lett. 95, 252301 (2005)"
arXiv:0811.0369"

Expect 470, find 7.6 ± 50.4 !"
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Resonant Production"

•  ν scatters from nucleon, nucleon resonance is excited, decays back to 
ground state via emission of 1 or more mesons"

•  ν + N → ν/µ- + Δ"
•  Study nuclear effects and atomic mass dependence for multi-pi final 

states"

Total Cross-section and dσ/dQ2 for the Δ++.  Errors are statistical only"
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Cross Section Summary"

•  Constrain charged-current channels to 
~5% total, dominated by beam/flux error"
– CCQE, coherent pion, resonant, DIS"

•  NC more difficult, expect 10% total error"
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Strange Particles"

•  Focus on exclusive channel 
strange particle production"

•  Important for bgd calculations 
of nucleon decay expts"

•  Extended anti-nu running = 
single hyperon production, 
greatly extend form factor 
analyses"

MINERνA Exclusive States	

400 x earlier samples 	


3 tons and 4 years	

ΔS = 0	


µ- K+  Λ0  	
42 Κ	

µ- π0 K+  Λ0 	
  38 Κ	

µ- π+ K0  Λ0 	
  26 Κ	

µ- Κ− K+ p 	
  20 Κ	

µ- Κ0 K+ π0 p 	
  6 Κ	


	  
ΔS = 1	


µ- K+ p 	
 	
65 Κ	

µ- K0 p 	
 	
10 Κ	

µ- π+ K0n 	
 	
  8 Κ	


	


ΔS = 0 - Neutral Current	

ν K+ Λ0  	
 	
14 Κ	

ν K0 Λ0  	
 	
 4 Κ	

ν K0 Λ0  	
 	
12 Κ	
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•  Dependence on atomic 
mass observed in  e/µ 
DIS"

•  Could be different for 
neutrinos"
–  Presence of axial-vector 

current "
–  Different nuclear effects 

for valence and sea"
–  leads to different 

shadowing for xF3 
compared to F2 "

Nuclear Effects & DIS"

Can we extrapolate 10-20 GeV to 100 
GeV?  Compare to JLAB results…"
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Neutrino-Fe "

•  Nuclear correction factors 
for CC ν-Fe and NC e/µ-
Fe appear to differ in 
behavior as f(xBj)"

•  Use CC DIS, high-
multiplicity events"

•  Resolution necessary for 
neutrino and HEP expts!"

–  Use ν-nuclear data to 
develop free-proton PDFs 
at high xBj"

Fe PDFs extracted from NuTeV nu, 
anti-nu data, compared to SLAC/NMC 

parameterization"

arXiv:0710.4897"
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MINERvA & NOvA"
Total fractional error in the 

predictions as a function of  reach 
(NOvA) 

Process" QE" RES" COH" DIS"

δσ/σ NOW (CC,NC)" 20%" 40%" 100%" 20%"

δσ/σ after MINERνA (CC,NC)" 5%/na" 5%/10%" 5%/20%" 5%/10%"
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MINERvA & T2K"
•  T2K’s near detector will see 

different mix of events than the 
far detector"

•  To make an accurate prediction 
one needs"

–  1 - 4 GeV neutrino  
cross sections  
(with energy dependence )"

•  MINERvA can provide these with 
low energy NuMI configuration "
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MINERvA & DUSEL"

ν

300kt Water Cerenkov"

arXiv: 0803.3423

arXiv: 0705.4396"

Backgrounds from NC p0 production feed down 
Study above assumes 5% knowledge of background 
Basic cross-sections have large uncertainties (30-100%) 
Note: MiniBoone coherent / all p0  = 19.5 +/- 2.7% @ 1 GeV 

ν


